Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study

نویسندگان

  • Hans-Peter W van Jonbergen
  • Bernardo Innocenti
  • Gian Luca Gervasi
  • Luc Labey
  • Nico Verdonschot
چکیده

BACKGROUND Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. METHODS We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. RESULTS During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. CONCLUSIONS Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiologic Assessment of Distal Femur Cutting Angle in Varus Knee Candidates for Total Knee Arthroplasty

Background: In a total knee arthroplasty surgery the goal is to produce 90 degree angle between the knee articular lobe and the mechanical femoral line. Most orthopedic surgeons usually utilize a 5 to 7 degree for distal femoral cutting angle. In this study we will aim at clearing this question, that whether the” five-seven degree” distal femoral cutting angle supposed to be an equable spectrum...

متن کامل

Distal Femoral Valgus Cut Errors in Total Knee Replacement

The causes of malalignment in total knee arthroplasty can be categorized into three different groups; 1) Errors in bone cuts 2) Errors in implant fixations, and 3) The method of setting down the cutting guides (1). We would like to announce that more several distal femoral valgus cut errors may occur during total knee replacement.

متن کامل

ROTATING HINGE VERSUS CONSTRAINED CONDYLAR KNEE REPLACEMENT: WHICH ONE IS ACTUALLY MORE CONSTRAINED? A FINITE ELEMENT STUDY

This was Presented in 5th International Congress of Iranian Iranian Society of Knee Surgery, Arthroscopy, and Sports Traumatology (ISKAST), 14-17 Feb 2018- Kish, Iran

متن کامل

Analysis of the Geometry of the Distal Femur and Proximal Tibia in the Osteoarthritic Knee: A 3D Reconstruction CT Scan Based Study of 449 Cases

    Background: The aim of this study is to evaluate the geometry of the distal femur and the proximal tibia in the osteoarthritic knee using 3D reconstructive CT scan imaging. Methods: 449 patients with knee osteoarthritis were treated surgically in our center with patient-specific technology total knee arthroplasty. Preoperatively, all the patients underwent a CT scan according to a standard ...

متن کامل

Finite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions

Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012